
Humanoid Robot Project
Establishment (Level-3)

HUMANOID ROBOT PROJECT
ESTABLISHMENT (LEVEL-3)
Course Code: -- Credits: --

CIE Marks: 30

Exam Hours: 03 SEE Marks: 20

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to…

CLO Learning Outcome

CLO 1 Optimize humanoid robot designs for enhanced performance and reliability.

CLO 2 Integrate IoT and AI-driven features into humanoid systems.

CLO 3 Develop and implement vision systems for humanoid robots.

CLO 4 Plan, prototype, and test humanoid robots tailored to real-world scenarios.

CLO 5
Execute full-scale humanoid projects, focusing on implementation and

refinement.

CLO 6
Deploy humanoid robots in practical environments and create detailed

project documentation.

SUMMARY OF COURSE CONTENT

Textbooks:

• "Advanced Robotics: Design, AI, and Applications" by Kevin Warwick

• "Machine Vision: Theory, Algorithms, and Practicalities" by E. R. Davies

Additional References:

• "AI for Robotics: Programming Intelligent Machines" by Francis Govers

• "IoT Applications and Integration for Robotics" by Rajesh Singh and Anita Gehlot

Serial

No.
SUMMARY OF COURSE CONTENT Hours CLOs

1
Optimizing humanoid robot designs for enhanced performance and

reliability
5 CLO 1

2 Integrating IoT and AI-driven features into humanoid systems 6 CLO 2

3 Developing and implementing vision systems for humanoid robots 6 CLO 3

4
Planning, prototyping, and testing humanoid robots for real-world

scenarios
8 CLO 4

5
Executing full-scale humanoid projects, focusing on implementation and

refinement
7 CLO 5

6
Deploying humanoid robots in practical environments and creating

detailed project documentation
6 CLO 6

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Lab Participation
(10)

Assignments
(10)

Quizzes
(10)

Remember 05
Understand 05
Apply 05

Analyze 05

Evaluate 05 05

Create

Bloom's Category Test

Remember

Understand

Apply 10

Analyze

Evaluate

Create 10

CIE- Continuous Internal Evaluation (30 Marks)

SEE- Semester End Examination (20 Marks)

COURSE PLAN

Week Topics
Teaching-Learning

Strategy(s)

Class

Hour

Practice

Hour
Assessment Strategy(s)

Mapping

with CLO

01-02

Advanced Humanoid Design:

Skills in advanced humanoid

robot design.

Lecture, Design

Workshops, 3D

Modeling Exercises

10h 6h
Design Assignments, Peer

Review
CLO 1

03-04

IoT and AI Integration: Ability

to program AI-enhanced

behaviors for humanoids.

AI Algorithm Tutorials,

IoT Integration

Workshops

10h 6h
Programming Tasks, AI

Testing
CLO 2

05-06

Vision and Object Recognition:

Skills in integrating vision

systems with humanoid robots.

Vision System

Tutorials, Object

Detection Exercises

10h 6h
Vision System Testing,

Practical Assignments
CLO 3

07-09

Humanoid Project Phase 1:

Initial development of large-

scale humanoid robots.

Brainstorming, Initial

Prototyping,

Debugging Sessions

15h 9h
Prototype Demonstration,

Interim Reports
CLO 4

10-13

Humanoid Project Phase 2:

Advanced skills in building and

testing complete humanoid

systems.

Full-scale

Development, Iterative

Testing, Refinement

20h 12h
System Testing,

Functionality Evaluations
CLO 5

14-16

Deployment and

Documentation: Practical

experience and reporting skills.

Deployment Tutorials,

Report Writing

Sessions

15h 9h

Deployment Review,

Comprehensive

Documentation

CLO 6

17

Final Assessment: Evaluation

of the final humanoid robot

project.

Project Presentation,

Demonstration
5h --

Final Presentation,

Comprehensive

Evaluation

CLO 1-6

LAB 1

Introduction to the Rhino

1.1 Objectives

The purpose of this lab is to familiarize you with the Rhino robot arm, the
hard home and soft home configurations, the use of the teach pendant, and
the function of encoders. In this lab, you will:

• move the Rhino using the teach pendant

• send the Rhino to the hard home and soft home configurations

• store sequences of encoder counts as “programs”

• demonstrate at sequence of motions that, at minimum, places one
block on top of another.

1.2 References

• Use of the teach pendant: Rhino Owner’s Manual chapters 3 and 4.

• How to edit a motion program: Rhino Owner’s Manual chapter 5.

1.3 Task

Using the teach pendant, each team will “program” the Rhino to pick and
place blocks. The program may do whatever you want, but all programs
must stack at least one block on top of another. Programs must begin and
end in the hard home position.

1

2 LAB 1. INTRODUCTION TO THE RHINO

1.4 Procedure

1. Turn on the Rhino controller (main power and motor power).

2. Put controller in teach pendant mode.

3. Experiment with the arm, using the teach pendant to move the motors
that drive each axis of the robot.

• Observe that the teach pendant will display a number for each
motor you move. These numbers correspond to encoder mea-
surements of the angle of each motor axis. By default, the teach
pendant will move each motor 10 encoder steps at a time. You
can refine these motions to 1 encoder step at a time by pressing
SHIFT + Slow on the teach pendant.

4. SHIFT + Go Hard Home: moves the arm to a reference configurations
based on the physical position of the motor axes and resets all encoders
to zero.

5. LEARN: Enter learn mode on the teach pendant.

6. Program a sequence of motions: move a motor, ENTER, move another
motor, ENTER, ...

• Beware storing multi-axis motions as a single “step” in your pro-
gram. The Rhino may not follow the same order of motor move-
ments when reproducing your step. Break up dense multi-axis
motions (especially when maneuvering near or around an obsta-
cle) into smaller, less-dense steps.

• Store gripper open/close motions as separate steps.

7. The final motion should be: Go Soft Home, ENTER. The soft home
position simply seeks to return all encoders to zero counts.

• If nothing has disturbed your Rhino, Go Soft Home should re-
sult in virtually the same configuration as Go Hard Home. The
Rhino will not allow you to use Go Hard Home as a “step” in your
motion program.

1.5. REPORT 3

• If your robot has struck an obstacle, the encoder counts will no
longer accurately reflect the arm’s position with respect to the
hard home position. If you use soft home to return the robot to
zero encoder counts, it will be a different configuration than hard
home. In such an instance, you will need to Go Hard Home to
recalibrate the encoders.

8. END/PLAY: enter “play” mode.

9. RUN: executes the sequence of motions you have stored in the teach
pendant’s memory.

1.5 Report

None required. Finish pre-lab for lab 2.

1.6 Demo

Show your TA the sequence of motions your team has programmed. Remem-
ber, your program must successfully stack at least one block on another.

1.7 Grading

Grades will be pass/fail, based entirely on the demo.

4 LAB 1. INTRODUCTION TO THE RHINO

LAB 2

The Tower of Hanoi

2.1 Objectives

This lab is an introduction to controlling the Rhino robots using the cpp
programming language. In this lab, you will:

• record encoder counts for various configurations of the robot arm

• using prewritten cpp functions, move the robot to configurations based
on encoder counts

• order a series of configurations that will solve the Tower of Hanoi
problem.

2.2 Pre-Lab

Read ”A Gentle Introduction to ROS”, available online, Specifically:

• Chapter 2: 2.4 Packages, 2.5 The Master, 2.6 Nodes, 2.7.2 Messages
and message types.

• Chapter 3 Writing ROS programs.

2.3 References

• Consult Appendix B of this lab manual for details of ROS and cpp
functions used to control the Rhino.

• ”A Gentle Introduction to ROS”, Chapter 2 and 3.

5

6 LAB 2. THE TOWER OF HANOI

• A short tutorial for ROS by Hyongju Park. https://sites.google.com/site/ashortrostutorial/

• Since this is a robotics lab and not a course in computer science or
discrete math, feel free to Google for solutions to the Tower of Hanoi
problem.1 You are not required to implement a recursive solution.

1http://www.cut-the-knot.org/recurrence/hanoi.shtml (an active site, as of this writ-
ing.)

2.4. TASK 7

Figure 2.1: Example start and finish tower locations.

Figure 2.2: Examples of a legal and an illegal move.

2.4 Task

The goal is to move a “tower” of three blocks from one of three locations
on the table to another. An example is shown in Figure 2.1. The blocks
are numbered with block 1 on the top and block 3 on the bottom. When
moving the stack, two rules must be obeyed:

1. Blocks may touch the table in only three locations (the three “towers”).

2. You may not place a block on top of a lower-numbered block, as illus-
trated in Figure 2.2.

For this lab, we will complicate the task slightly. Your cpp program should
use the robot to move a tower from any of the three locations to any of the
other two locations. Therefore, you should prompt the user to specify the
start and destination locations for the tower.

8 LAB 2. THE TOWER OF HANOI

2.5 Procedure

1. Creat your own workspace as shown in Appendix B.

2. Download lab2.zip from the course website and extract into you
workspace /src folder. Compile your workspace with catkin make.
Inside this package you can find lab2.cpp with comments to help you
complete the lab.

• lab2.cpp a file in src folder with skeleton code to get you started
on this lab. See Appendix B for how to use basic ROS.

• CMakeLists.txt a file that setup the necessary libraries and en-
vironment for compiling lab2.cpp.

• package.xml This file defines properties about the package in-
cluding package dependencies.

• To run lab2 code: Run roslaunch rhino ros rhino start.launch,
then open a new termial, source it and run rosrun lab2 lab2

3. Use the provided white stickers to mark the three possible tower bases.
You should initial your markers so you can distinguish your tower bases
from the ones used by teams in other lab sections.

4. For each base, place the tower of blocks and use the teach pendant to
find encoder values corresponding to the pegs of the top, middle, and
bottom blocks. Record these encoder values for use in your program.

5. Write a cpp program that prompts the user for the start and desti-
nation tower locations (you may assume that the user will not choose
the same location twice) and moves the blocks accordingly.

Note: the “Mode” switch on the Rhino controller should be pointed
to “Computer” before you run your ROS node rosrun lab2 lab2.

2.6 Report

No report is required. You must submit a hardcopy of your lab2.cpp file
with a coversheet containing:

• your names

• “Lab 2”

2.7. DEMO 9

• the weekday and time your lab section meets (for example, “Monday,
1pm”).

2.7 Demo

Your TA will require you to run your program twice; on each run, the TA
will specify a different set of start and destination locations for the tower.

2.8 Grading

Grades are out of 2. Each successful demo will be graded pass/fail with a
possible score of 1.

10 LAB 2. THE TOWER OF HANOI

LAB 3

Forward Kinematics

3.1 Objectives

The purpose of this lab is to compare the theoretical solution to the forward
kinematics problem with a physical implementation on the Rhino robot. In
this lab you will:

• parameterize the Rhino following the Denavit-Hartenberg (DH) con-
vention

• use Robotica to compute the forward kinematic equations for the
Rhino

• write a cpp function that moves the Rhino to a configuration specified
by the user.

From now on, labwork is closely tied to each arm’s differences.
Pick a robot and stick with it for the remaining labs.

3.2 References

• Chapter 3 of SH&V provides details of the DH convention and its
use in parameterizing robots and computing the forward kinematic
equations.

• A matlab version code for translating DH parameters to forward HT
matrix is available online, ”Denavit Hartenberg Parameters” by Mah-
moud KhoshGoftar.

11

12 LAB 3. FORWARD KINEMATICS

(https://www.mathworks.com/matlabcentral/fileexchange/44585-denavit-
hartenberg-parameters)

• The complete Robotica manual is available in pdf form on the course
website. Additionally, a “crash course” on the use of Robotica and
Mathematica is provided in Appendix A of this lab manual.

3.3 Tasks

3.3.1 Physical Implementation

The user will provide five joint angles {θ1, θ2, θ3, θ4, θ5}, all given in degrees.
Angles θ1, θ2, θ3 will be given between −180◦ and 180◦, angle θ4 will be
given between −90◦ and 270◦, and angle θ5 is unconstrained. The goal is to
translate the desired joint angles into the corresponding encoder counts for
each of the five joint motors. We need to write five mathematical expressions

encB(θ1, θ2, θ3, θ4, θ5) =?

encC(θ1, θ2, θ3, θ4, θ5) =?

encD(θ1, θ2, θ3, θ4, θ5) =?

encE(θ1, θ2, θ3, θ4, θ5) =?

encF (θ1, θ2, θ3, θ4, θ5) =?

and translate them into cpp code (note that we do not need an expression
for encoder A, the encoder for the gripper motor, the ros message command
starts with encoder B). Once the encoder values have been found, we will
command the Rhino to move to the corresponding configuration.

3.3.2 Theoretical Solution

Find the forward kinematic equations for the Rhino robot. In particular,
we are interested only in the position d05 of the gripper and will ignore the
orientation R0

5. We will use Robotica to find expressions for each of the
three components of d05.

3.3.3 Comparison

For any provided set of joint angles {θ1, θ2, θ3, θ4, θ5}, we want to compare
the position of the gripper after your cpp function has run to the position
of the gripper predicted by the forward kinematic equations.

3.4. PROCEDURE 13

Figure 3.1: Wrist z axes do not intersect.

3.4 Procedure

3.4.1 Physical Implementation

1. Download and extract lab3.zip from the course website. Inside this
package are a number of files to help complete the lab, very similar to
the one provided for lab 2.

2. Before we proceed, we must define coordinate frames so each of the
joint angles make sense. For the sake of the TA’s sanity when helping
students in the lab, DH frames have already been assigned in Figure 3.3
(on the last page of this lab assignment). On the figure of the Rhino,
clearly label the joint angles {θ1, θ2, θ3, θ4, θ5}, being careful that the
sense of rotation of each angle is correct.

Notice that the z3 and z4 axes do not intersect at the wrist, as shown
in Figure 3.1. The offset between z3 and z4 requires the DH frames at
the wrist to be assigned in an unexpected way, as shown in Figure 3.3.
Consequently, the zero configuration for the wrist is not what we would
expect: when the wrist angle θ4 = 0◦, the wrist will form a right angle
with the arm. Please study Figure 3.3 carefully.

3. Use the rulers provided to measure all the link lengths of the Rhino.
Try to make all measurements accurate to at least the nearest half
centimeter. Label these lengths on Figure 3.3.

4. Now measure the ratio encoder steps
joint angle for each joint. Use the teach pen-

dant to sweep each joint through a 90◦ angle and record the starting
and ending encoder values for the corresponding motor. Be careful

14 LAB 3. FORWARD KINEMATICS

Figure 3.2: With the Rhino in the hard home position encoder D is zero
while joint angle θ2 is nonzero.

that the sign of each ratio corresponds to the sense of rotation of each
joint angle.

3.4. PROCEDURE 15

For example, in order to measure the shoulder ratio, consider following
these steps:

• Adjust motor D until the upper arm link is vertical. Record the
value of encoder D at this position.

• Adjust motor D until the upper arm link is horizontal. Record
the value of encoder D at this position.

• Refer to the figure of the Rhino robot and determine whether
angle θ2 swept +90◦ or −90◦.

• Compute the ratio ratioD/2 = encD(1)−encD(0)
θ2(1)−θ2(0) .

We are almost ready to write an expression for the motor D encoder,
but one thing remains to be measured. Recall that all encoders are set
to 0 when the Rhino is in the hard home configuration. However, in
the hard home position not all joint angles are zero, as illustrated in
Figure 3.2. It is tempting to write encD(θ2) = ratioD/2θ2 but it is easy
to see that this expression is incorrect. If we were to specify the joint
angle θ2 = 0, the expression would return encD = 0. Unfortunately,
setting encoder D to zero will put the upper arm in its hard home
position. Look back at the figure of the Rhino with the DH frames
attached. When θ2 = 0 we want the upper arm to be horizontal. We
must account for the angular offset at hardhome.

16 LAB 3. FORWARD KINEMATICS

5. Use the provided protractors to measure the joint angles when the
Rhino is in the hard home position. We will call these the joint offsets
and identify them as θi0. Now we are prepared to write an expression
for the motor D encoder in the following form:

encD(θ2) = ratioD/2(θ2 − θ20) = ratioD/2∆θ2.

Now, if we were to specify θ2 = 0, encoder D will be set to a value
that will move the upper arm to the horizontal position, which agrees
with our choice of DH frames.

6. Derive expressions for the remaining encoders. You will quickly notice
that this is complicated by the fact that the elbow and wrist motors
are located on the shoulder link. Due to transmission across the shoul-
der joint, the joint angle at the elbow is affected by the elbow motor
and the shoulder motor. Similarly, the joint angle at the wrist is af-
fected by the wrist, elbow, and shoulder motors. Consequently, the
expressions for the elbow and wrist encoders will be functions of more
than one joint angle.

It is helpful to notice the trasmission gears mounted on the shoulder
and elbow joints. These gears transmit the motion of the elbow and
wrist motors to their respective joints. Notice that the diameter of the
transmission gears is the same. This implies that the change in the
shoulder joint angle causes a change in the elbow and wrist joint angles
of equal magnitude. Mathematically, this means that θ3 is equal to
the change in the shoulder angle added or subtracted from the elbow
angle. That is,

∆θ3 = ((θ3 − θ30)± (θ2 − θ20)).

A similar expression holds for ∆θ4. It is up to you to determine the
± sign in these expressions.

3.4.2 Theoretical Solution

1. Construct a table of DH parameters for the Rhino robot. Use the DH
frames already established in Figure 3.3.

2. Write a Robotica source file containing the Rhino DH parameters.
Consult Appendix A of this lab manual for assistance with Robotica.

3.5. REPORT 17

3. Write a Mathematica file that finds and properly displays the forward
kinematic equation for the Rhino. Consult Appendix A of this lab
manual for assistance with Mathematica.

4. OR Use matlab ”Denavit Hartenberg Parameters” to calculate the
forward kinematics. Use simplify() in matlab as you see fit.

3.4.3 Comparison

1. The TA will supply two sets of joint angles {θ1, θ2, θ3, θ4, θ5} for the
demonstration. Record these values for later analysis.

2. Run the executable file and move the Rhino to each of these configu-
rations. Measure the x,y,z position vector of the center of the gripper
for each set of angles. Call these vectors r1 and r2 for the first and
second sets of joint angles, respectively.

3. In Mathematica OR Matlab, specify values for the joint variables that
correspond to both sets of angles used for the Rhino. Note the vector
d05(θ1, θ2, θ3, θ4, θ5) for each set of angles. Call these vectors d1 and d2.

(Note that Mathematica expects angles to be in radians, but you can
easily convert from radians to degrees by adding the word Degree after
a value in degrees. For example, 90 Degree is equivalent to π

2 .)

4. For each set of joint angles, Calculate the error between the two for-
ward kinematic solutions. We will consider the error to be the magni-
tude of the distance between the measured center of the gripper and
the location predicted by the kinematic equation:

error1 = ‖r1 − d1‖ =
√

(r1x − d1x)2 + (r1y − d1y)2 + (r1z − d1z)2.

A similar expression holds for error2. Because the forward kinematics
code will be used to complete labs 4 and 6, we want the error to be as
small as possible. Tweak your code until the error is minimized.

3.5 Report

Assemble the following items in the order shown.

1. Coversheet containing your names, “Lab 3”, and the weekday and time
your lab section meets (for example, “Tuesday, 3pm”).

18 LAB 3. FORWARD KINEMATICS

2. A figure of the Rhino robot with DH frames assigned, all joint variables
and link lengths shown, and a complete table of DH parameters.

3. A clean derivation of the expressions for each encoder. Please sketch
figures where helpful and draw boxes around the final expressions.

4. The forward kinematic equation for the tool position only of the Rhino
robot. Robotica and the matlab ”DH parameters” will generate the
entire homogenous transformation between the base and tool frames

T 0
5 (θ1, θ2, θ3, θ4, θ5) =

[
R0

5(θ1, θ2, θ3, θ4, θ5) d05(θ1, θ2, θ3, θ4, θ5)
0 0 0 1

]

but you only need to show the position of the tool frame with respect
to the base frame

d05(θ1, θ2, θ3, θ4, θ5) = [vector expression].

5. For each of the two sets of joint variables you tested, provide the
following:

• the set of values, {θ1, θ2, θ3, θ4, θ5}
• the measured position of the tool frame, ri

• the predicted position of the tool frame, di

• the (scalar) error between the measured and expected positions,
errori.

6. A brief paragraph (2-4 sentences) explaining the sources of error and
how one might go about reducing the error.

3.6 Demo

Your TA will require you to run your program twice, each time with a
different set of joint variables.

3.7 Grading

Grades are out of 3. Each successful demo will be graded pass/fail with a
possible score of 1. The remaining point will come from the lab report.

3.7. GRADING 19

Figure 3.3: Rhino robot with DH frames assigned.

20 LAB 3. FORWARD KINEMATICS

LAB 4

Inverse Kinematics

4.1 Objectives

The purpose of this lab is to derive and implement a solution to the inverse
kinematics problem for the Rhino robot, a five degree of freedom (DOF)
arm without a spherical wrist. In this lab we will:

• derive the elbow-up inverse kinematic equations for the Rhino

• write a cpp function that moves the Rhino to a point in space specified
by the user.

4.2 Reference

Chapter 3 of SH&V provides multiple examples of inverse kinematics solu-
tions.

4.3 Tasks

4.3.1 Solution Derivation

Given a desired point in space (x, y, z) and orientation {θpitch, θroll}, write
five mathematical expressions that yield values for each of the joint variables.
For the Rhino robot, there are (in general) four solutions to the inverse
kinematics problem. We will implement only one of the elbow-up solutions.

21

22 LAB 4. INVERSE KINEMATICS

• In the inverse kinematics problems we have examined in class (for 6
DOF arms with spherical wrists), usually the first step is to solve for
the coordinates of the wrist center. Next we would solve the inverse
position problem for the first three joint variables.

Unfortunately, the Rhino robots in our lab have only 5 DOF and no
spherical wrists. Since all possible positions and orientations require
a manipulator with 6 DOF, our robots cannot achieve all possible
orientations in their workspaces. To make matters more complicated,
the axes of the Rhino’s wrist do not intersect, as do the axes in the
spherical wrist. So we do not have the tidy spherical wrist inverse
kinematics as we have studied in class. We will solve for the joint
variables in an order that may not be immediately obvious, but is a
consequence of the degrees of freedom and wrist construction of the
Rhino.

• We will solve the inverse kinematics problem in the following order:

1. θ5, which is dependent on the desired orientation only

2. θ1, which is dependent on the desired position only

3. the wrist center point, which is dependent on the desired position
and orientation and the waist angle θ1

4. θ2 and θ3, which are dependent on the wrist center point

5. θ4, which is dependent on the desired orientation and arm angles
θ2 and θ3.

• The orientation problem is simplified in the following way: instead of
supplying an arbitrary rotation matrix defining the desired orientation,
the user will specify θpitch and θroll, the desired wrist pitch and roll
angles. Angle θpitch will be measured with respect to the zw, the axis
normal to the surface of the table, as shown in Figure 4.1. The pitch
angle will obey the following rules:

1. −90◦ < θpitch < 270◦

2. θpitch = 0◦ corresponds to the gripper pointed down

3. θpitch = 180◦ corresponds to the gripper pointed up

4. 0◦ < θpitch < 180◦ corresponds to the gripper pointed away from
the base

5. θpitch < 0◦ and θpitch > 180◦ corresponds to the gripper pointed
toward the base.

4.4. PROCEDURE 23

Figure 4.1: θpitch is the angle of the gripper measured from the axis normal
to the table.

4.3.2 Implementation

Implement the inverse kinematics solution by writing a cpp function to re-
ceive world frame coordinates (xw, yw, zw), compute the desired joint vari-
ables {θ1, θ2, θ3, θ4, θ5}, and command the Rhino to move to that configura-
tion using the lab3.cpp function written for the previous lab.

4.4 Procedure

1. Download and extract lab4.zip from the course website. Inside this
package are a number of files to help complete the lab. You will also
need to copy functions implemented in lab3.cpp file which you wrote
for the previous lab to current lab4.cpp.

2. Establish the world coordinate frame (frame w) centered at the corner
of the Rhino’s base shown in Figure 4.2. The xw and yw plane should
correspond to the surface of the table, with the xw axis parallel to
the sides of the table and the yw axis parallel to the front and back
edges of the table. Axis zw should be normal to the table surface,
with up being the positive zw direction and the surface of the table
corresponding to zw = 0.

24 LAB 4. INVERSE KINEMATICS

Figure 4.2: Correct location and orientation of the world frame.

We will solve the inverse kinematics problem in the base frame (frame
0), so we will immediately convert the coordinates entered by the user
to base frame coordinates. Write three equations relating coordinates
(xw, yw, zw) in the world frame to coordinates (x0, y0, z0) in the base
frame of the Rhino.

x0(xw, yw, zw) =

y0(xw, yw, zw) =

z0(xw, yw, zw) =

Be careful to reference the location of frame 0 as your team defined it
in lab 3, as we will be using the functions copied from lab3.cpp file
you created.

3. The wrist roll angle θroll has no bearing on our inverse kinematics
solution, therefore we can immediately write our first equation:

θ5 = θroll. (4.1)

4. Given the desired position of the gripper (x0, y0, z0) (in the base frame),
write an expression for the waist angle of the robot. It will be helpful
to project the arm onto the x0 − y0 plane.

θ1(x0, y0, z0) = (4.2)

4.4. PROCEDURE 25

Figure 4.3: Diagram of the wrist showing the relationship between the wrist
center point (xwrist, ywrist, zwrist) and the desired tool position (x0, y0, z0)
(in the base frame). Notice that the wrist center and the tip of the tool are
not both on the line defined by θpitch.

5. Given the desired position of the gripper (x, y, z)0 (in the base frame),
desired pitch of the wrist θpitch, and the waist angle θ1, solve for the
coordinates of the wrist center. Figure 4.3 illustrates the geometry at
the wrist that involves all five of these parameters.

xwrist(x0, y0, z0, θpitch, θ1) =

ywrist(x0, y0, z0, θpitch, θ1) =

zwrist(x0, y0, z0, θpitch, θ1) =

Remember to account for the offset between wrist axes z3 and z4, as
shown in Figure 4.3.

6. Write expressions for θ2 and θ3 in terms of the wrist center position

θ2(xwrist, ywrist, zwrist) = (4.3)

θ3(xwrist, ywrist, zwrist) = (4.4)

as we have done in class and numerous times in homework.

7. Only one joint variable remains to be defined, θ4. Note: θ4 6= θpitch
(see if you can convince yourself why this is true). Indeed, θ4 is a
function of θ2, θ3 and θpitch. Again, we must take into consideration
the offset between the wrist axes, as shown in Figure 4.3.

θ4(θ2, θ3, θpitch) = (4.5)

26 LAB 4. INVERSE KINEMATICS

8. Now that we have expressions for all the joint variables, enter these
formulas into your lab4.cpp file. The last line of your file should call
the lab angles function you wrote for lab 3, directing the Rhino to
move to the joint variable values you just found.

4.5 Report

Assemble the following items in the order shown.

1. Coversheet containing your names, “Lab 4”, and the weekday and
time your lab section meets (for example, “Tuesday, 3pm”).

2. A cleanly written derivation of the inverse kinematics solution for
each joint variable {θ1, θ2, θ3, θ4, θ5}. You must include figures in
your derivation. Please be kind to your TA and invest the effort to
make your diagrams clean and easily readable.

3. For each of the two sets of positions and orientations you
demonstrated, provide the following:

• the set of values {(xw, yw, zw), θpitch, θroll}
• the measured location of the tool

• the (scalar) error between the measured and expected positions.

4. A brief paragraph (2-4 sentences) explaining the sources of error and
how one might go about reducing the error.

4.6 Demo

Your TA will require you to run your program twice, each time with a
different set of desired position and orientation. The first demo will require
the Rhino to reach a point in its workspace off the table. The second demo
will require the Rhino to reach a configuration above a block on the table
with sufficient accuracy to pick up the block.

4.7 Grading

Grades are out of 3. Each successful demo will be graded pass/fail with a
possible score of 1. The remaining point will come from the lab report.

LAB 5

Image Processing

5.1 Objectives

This is the first of two labs whose purpose is to integrate computer vision
and control of the Rhino robot. In this lab we will:

• separate the objects in a grayscaled image from the background by
selecting a threshold greyscale value

• identify each object with a unique color

• eliminate misidentified objects and noise from image

• determine the number of significant objects in an image.

5.2 References

• Chapter 11 of SH&V provides detailed explanation of the threshold
selection algorithm and summarizes an algorithm for associating the
objects in an image. Please read all of sections 11.3 and 11.4 before
beginning the lab.

• Appendix C of this lab manual explains how to work with image
data in your code. Please read all of sections C.1 through C.3 before
beginning the lab.

27

28 LAB 5. IMAGE PROCESSING

5.3 Tasks

5.3.1 Separating Objects from Background

The images provided by the camera are colored, and then converted to
gray grayscaled. That is, each pixel in the image has an associated
grayscale value 0-255, where 0 is black and 255 is white. We will assume
that the image can be separated into background (light regions) and
objects (dark regions). We begin by surveying the image and selecting the
grayscale value zt that best distinguishes between objects and the
background; all pixels with values z > zt (lighter than the threshold) will
be considered to be in the background and all pixels with values z ≤ zt
(darker than the threshold) will be considered to be in an object.

We will implement an algorithm that minimizes the within-group variance
between the background and object probability density functions (pdfs).
Once the threshold value has been selected, we will replace each pixel in
the background with a white pixel (z = 255) and each pixel in an object
with a black pixel (z = 0).

5.3.2 Associating Objects in the Image

Once objects in the image have been separated from the background, we
want to indentify the separate objects in the image. We will distinguish
among the objects by assigning each object a unique color. The pegboards
on the workspace will introduce many small “dots” to the image that will
be misinterpreted as objects; we will discard these false objects along with
any other noise in the image. Finally, we will report to the user the
number of significant objects identified in the image.

5.4 Procedure

5.4.1 Separating Objects from Background

1. Read section 11.3 in SH&V and sections C.1 through C.7 in this lab
manual before proceeding further.

2. Download the following files from the course website, extract to the
src folder of your catkin workspace:

v i s i o n l a b . ta r . gz

5.4. PROCEDURE 29

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

pixel intensity

pi
xe

l c
ou

nt

(a) (b)

Figure 5.1: A sample image of the tabletop (a) the grayscaled image (b) the
histogram for the image.

The cv camera-master package is the driver of the camera, the lab56
package contains the codes for lab 5 and 6. You should go over
Appendix C.1 for details of the code.

3. Compile the workspace, run the camera driver(described in
Appendix C.1.1). Then open another shell(run setup.bash first as
always) and run lab5’s node:

$ rosrun lab56 lab56

You will see 4 video windows, and if you click on one of the window,
the position of the point you clicked is shown on the shell. You will
modify the code ”lab56.cpp” so that the 4 windows will show an
original colored image(already there), a gray scaled image(already
there), a thresholded image and an image showing different objects
with different color.

4. We will first need to build a histogram for the grayscaled image.
Define an array H with 256 entries, one for each possible grayscale
value. Now examine each pixel in the image and tally the number of
pixels with each possible grayscale value. An example grayscaled
image and its histogram are shown in Figure 5.1.

5. The text provides an efficient algorithm for finding the threshold
grayscale value that minimizes the within-group variance between
background and objects. Implement this algorithm and determine
threshold zt. Some comments:

• Do not use integer variables for your probabilities.

30 LAB 5. IMAGE PROCESSING

• When computing probabilites (such as H[z]
N×N) be sure the

number in the numerator is a floating point value. For example,
(float)H[z]/NN will ensure that c++ performs floating point
division.

• Be aware of cases when the conditional probability q0(z) takes
on values of 0 or 1. Several expressions in the iterative
algorithm divide by q0(z) or (1− q0(z)). If you implement the
algorithm blindly, you will probably divide by zero at some
point and throw off the computation.

5.4. PROCEDURE 31

Figure 5.2: Sample image after thresholding.

6. Again, consider each pixel in the image and color it white if z > zt,
black if z ≤ zt. Figure 5.2 shows the same image from Figure 5.1 (a)
after thresholding.

5.4.2 Associating Objects in the Image

1. Read section 11.4 in SH&V and sections C.1 through C.2 in this lab
manual before proceeding further.

2. Implement an algorithm that checks 4-connectivity for each pixel and
relates pixels in the same object. The difficult part is noting the
equivalence between pixels with different labels in the same object.
There are many possible ways to accomplish this task; we outline two
possible solutions here, although you are encouraged to divise your
own clever algorithm.

• A simple but time consuming solution involves performing a
raster scan for each equivalence. Begin raster scanning the
image until an equivalence is encountered (for example, between
pixels with label 2 and pixels with label 3). Immediately
terminate the raster scan and start over again; every time a
pixel with label 3 is found, relabel the pixel with 2. Continue
beyond the point of the first equivalence until another
equivalence is encountered. Again, terminate the raster scan
and begin again. Repeat this process until a raster scan passes
through the entire image without noting any equivalencs.

32 LAB 5. IMAGE PROCESSING

• An alternative approach can associate objects with only two
raster scans. This approach requires the creation of two arrays:
one an array of integer labels, the other an array of pointers for
noting equivalences. It should be noted that this algorithm is
memory expensive because it requires two array entries for each
label assigned to the image. Consider the following pseudocode.

int label[100];

int *equiv[100];

int pixellabel[height][width];

initialize arrays so that:

equiv[i] = &label[i]

pixellabel[height][width] = -1 if image pixel is white

pixellabel[height][width] = 0 if image pixel is black

labelnum = 1;

FIRST raster scan

{

Pixel = pixellabel(row, col)

Left = pixellabel(row, col-1)

Above = pixellabel(row-1, col)

you will need to condition the

assignments of left and above

to handle row 0 and column 0 when

there are no pixels above or left

if Pixel not in background (Pixel is

part of an object)

{

if (Left is background) and

(Above is background)

{

pixellabel(row,col) = labelnum

label[labelnum] = labelnum

labelnum ++

}

5.4. PROCEDURE 33

if (Left is object) and

(Above is background)

pixellabel(row,col) = Left

if (Left is background) and

(Above is object)

pixellabel(row,col) = Above

EQUIVALENCE CASE:

if (Left is object) and

(Above is object)

{

smallerbaselabel = min{*equiv[Left],

*equiv[Above]}

min = Left if smallerbaselabel==

*equiv[Left]

else min = Above

max = the other of {Left, Above}

pixellabel(row,col) =

smallerbaselabel

*equiv[max] = *equiv[min]

equiv[max] = equiv[min]

}

}

}

Now assign same label to all pixels in

the same object

SECOND raster scan

Pixel = pixellabel(row, col)

if Pixel not in background (Pixel is

part of an object)

pixellabel = *equiv[Pixel]

34 LAB 5. IMAGE PROCESSING

For an illustration of how the labels in an image change after
the first and second raster scans, see Figure 5.3. Figure 5.4
shows how equivalence relations affect the two arrays and
change labels during the first raster scan.

Figure 5.3: Pixels in the image after thresholding, after the first raster scan,
and after the second raster scan. In the first image, there are only black
and white pixels; no labels have been assigned. After the first raster scan,
we can see the labels on the object pixels; an equivalence is noted by small
asterisks beside a label. After the second raster scan, all the pixels in the
object bear the same label.

3. Once all objects have been identified with unique labels for each
pixel, we next perform “noise elimination” and discard the small
objects corresponding to holes in the tabletop or artifacts from
segmentation. To do this, compute the number of pixels in each
object. We could again implement a within-group variance algorithm
to automatically determine the threshold number of pixels that
distinguishes legitimate objects from noise objects, but you may
simply choose a threshold pixel count yourself. For the objects whose
pixel count is below the threshold, change the object color to white,
thereby forcing the object into the background. Figure 5.5 provides
an example of an image after complete object association and noise
elimination.

4. Report to the user the number of legitimate objects in the image.

5.4. PROCEDURE 35

Figure 5.4: Evolution of the pixel labels as equivalences are encountered.

36 LAB 5. IMAGE PROCESSING

Figure 5.5: Sample image after object association.

5.5 Report

No report is required for this lab. You must submit your lab56.cpp file by
emailing it as an attachment to your TA. First, rename the file with the
last names of your group members. For example, if Barney Rubble and
Fred Flintstone are in your group, you will submit
RubbleFlintstone5.cpp. Make the subject of your email “Lab 5 Code.”

5.6 Demo

You will demonstrate your working solution to your TA with various
combinations of blocks and other objects.

5.7 Grading

Grades are out of 3, based on the TA’s evaluation of your demo.

LAB 6

Camera Calibration

6.1 Objectives

This is the capstone lab of the semester and will integrate your work done
in labs 3-5 with forward and inverse kinematics and computer vision. In
this lab you will:

• find the image centroid of each object and draw crosshairs over the
centroids

• develop equations that relate pixels in the image to coordinates in
the world frame

• report the world frame coordinates (xw, yw) of the centroid of each
object in the image

• Bonus: using the prewritten point-and-click functions, command the
robot to retrieve a block placed in veiw of the camera and move it to
a desired location.

6.2 References

• Chapter 11 of SH&V explains the general problem of camera
calibration and provides the necessary equations for finding object
centroids. Please read all of sections 11.1, 11.2, and 11.5 before
beginning the lab.

• Appendix C of this lab manual explains how to simplify the intrinsic
and extrinsic equations for the camera. Please read all of section C.3
before beginning the lab.

37

38 LAB 6. CAMERA CALIBRATION

6.3 Tasks

6.3.1 Object Centroids

In lab 5, we separated the background of the image from the significant
objects in the image. Once each object in the image has been distinguished
from the others with a unique label, it is a straightforward task to
indentify the pixel corresponding to the centroid of each object.

6.3.2 Camera Calibration

The problem of camera calibration is that of relating (row,column)
coordinates in an image to the corresponding coordinates in the world
frame (xw, yw, zw). Chapter 11 in SH&V presents the general equations for
accomplishing this task. For our purposes we may make several
assumptions that will vastly simplify camera calibration. Please consult
section C.3 in this lab manual and follow along with the simplification of
the general equations presented in the textbook.

Several parameters must be specified in order to implement the equations.
Specifically, we are interested in θ the rotation between the world frame
and the camera frame and β the scaling constant between distances in the
world frame and distances in the image. We will compute these parameters
by measuring object coordinates in the world frame and relating them to
their corresponding coordinates in the image.

6.3.3 Bonus: Pick and Place

The final task of this lab integrates the code you have written for labs 3-5.
Your lab 5 code provides the processed image from which you have now
generated the world coordinates of each object’s centroid. We can relate
the unique color of each object (which you assigned in lab 5) with the
coordinates of the object’s centroid. Using the prewritten point-and-click
functions, you may click on an object in an image and feed the centroid
coordinates to your lab 4 inverse kinematics code. Your lab 4 code
computes the necessary joint angles and calls your lab 3 code to move the
Rhino to that configuration.

We will be working with blocks that have wooden pegs passing through
their centers. From the camera’s perspective, the centroid of a block object
corresponds to the coordinates of the peg. You will bring together your lab

6.4. PROCEDURE 39

3-5 code and the prewritten point-and-click functions in the following way:
the user will click on a block in the image console, your code will command
the Rhino to move to a configuration above the peg for that block, you will
command the Rhino to grip the block and then return to the home
position with the block in its grip, the user will click on an unoccupied
portion of the image, and the Rhino will move to the corresponding region
of the table and release the block.

6.4 Procedure

6.4.1 Object Centroids

1. Read section 11.5 in SH&V before proceeding further.

2. Edit the associateObjects function you wrote for lab 5. Implement
the centroid computation equations from SH&V by adding code that
will identify the centroid of each significant object in the image.

3. Display the row and column of each object’s centroid to the user.

4. Draw crosshairs in the image over each centroid.

6.4.2 Camera Calibration

1. Read sections 11.1 and 11.2 in SH&V and section C.3 in this lab
manual before proceeding further. Notice that, due to the way row
and column are defined in our image, the camera frame is oriented in
a different way than given in the textbook. Instead, our setup looks
like Figure 6.1 in this lab manual.

2. Begin by writing the equations we must solve in order to relate image
and world frame coordinates. You will need to combine the intrinsic
and extrinsic equations for the camera; these are given in the
textbook and simplified in section C.8 of this lab manual. Write
equations for the world frame coordinates in terms of the image
coordinates.

xw(r, c) =

yw(r, c) =

40 LAB 6. CAMERA CALIBRATION

Figure 6.1: Arrangement of the world and camera frames.

3. There are six unknown values we must determine: Or, Oc, β, θ, Tx, Ty.
The principal point (Or, Oc) is given by the row and column
coordinates of the center of the image. We can easily find these
values by dividing the width and height variables by 2.

Or =
1

2
height =

Oc =
1

2
width =

The remaining paramaters β, θ, Tx, Ty will change every time the
camera is tilted or the zoom is changed. Therefore you must
recalibrate these parameters each time you come to the lab, as other
groups will be using the same camera and may reposition the camera
when you are not present.

4. β is a constant value that scales distances in space to distances in the
image. That is, if the distance (in unit length) between two points in
space is d, then the distance (in pixels) between the coorespoinding
points in the image is βd. Place two blocks on the table in view of
the camera. Measure the distance between the centers of the blocks
using a rule. In the image of the blocks, use centroids to compute the
pixels between the centers of the blocks. Calculate the scaling
constant.

β =

6.4. PROCEDURE 41

(a) (b)

Figure 6.2: (a) Overhead view of the table; the rectangle delineated by
dashed lines represents the camera’s field of vision. (b) The image seen by
the camera, showing the diagonal line formed by the blocks. Notice that
xc increases with increasing row values, and yc increases with increasing
column values.

5. θ is the angle of rotation between the world frame and the camera
frame. Please refer to section C.8 of this lab manual for an
explanation of why we need only one angle to define this rotation
instead of two as described in the textbook. Calculating this angle
isn’t difficult, but it is sometimes difficult to visualize. Place two
blocks on the table in view of the camera and arranged in a line
parallel to the world y axis as shown in Figure 6.1. Figure 6.2 gives
an overhead view of the blocks with a hypothetical cutout
representing the image captured by the camera. Because the
camera’s x and y axes are not quite parallel to the world x and y
axes, the blocks appear in a diagonal line in the image. Using the
centroids of the two blocks and simple trigonometric fuctions,
compute the angle of this diagonal line and use it to find θ, the angle
of rotation between the world and camera frames.

θ =

42 LAB 6. CAMERA CALIBRATION

6. The final values remaining for calibration are Tx, Ty, the coordinates
of the origin of the world frame expressed in the camera frame. To
find these values, measure the world frame coordinates of the centers
of two blocks; also record the centroid locations produced by your
code. Substitute these values into the two equations you derived in
step 2 above and solve for the unknown values.

Tx =

Ty =

7. Finally, insert the completed equations in your lab56.cpp file in the
onMouse() function. Your code should report to the user the
centroid location of each object in the image in (row,column) and
world coordinates (xw, yw).

6.4.3 Pick and Place

When the user clicks inside an image, the row and column position of the
mouse is passed into the ”onMouse” function in lab56.cpp.

1. Given the world coordinates that you have calculated in previous
section, find a suitable message type, write a publisher to publish the
world coordinate to a specific topic. The topic can be any name, and
is used to transfer the object coordinate information from lab56 to
lab4, such that lab 4 can use the data to move the rhino to to the
desired coordinate.

2. In lab 4, write a subscriber of the same topic name defined in the
previous step, write a callback function to retrieve the data from the
topic. Process the data and move the robot arm end effector to the
desired position with function calls.

3. The OnMouse function should enable you to left click onto one of the
blocks on the screen, grip the block and return to an intermediate
position.

4. On a right click, move the block to the right clicked position and
release the block. Return to softhome.

• NOTE: you can run both lab56 and lab4 nodes by running them
on separate command prompts.

6.5. REPORT 43

6.5 Report

No report is required for this lab. You must submit your lab56.cpp and
lab4.cpp file by emailing it as an attachment to your TA. First, rename
the file with the last names of your group members. For example, if
Barney Rubble and Fred Flintstone are in your group, you will submit
RubbleFlintstone6.cpp. Make the subject of your email “Lab 6 Code.”

6.6 Demo

You will demonstrate to your TA your code which draws crosshairs over the
centroid of each object in an image and reports the centroid coordinates in
(row,column) and (x, y)w coordinates. For the pick and place task, you will
also demonstrate that the robot will retrieve a block after you left click on
it in the image. The robot must also place the block in another location
when you right click on a separate position in the image.

6.7 Grading

Grades are out of 4, based on the TA’s evaluation of your demo, divided as
follows.

• 1 point for crosshairs drawn over the centroids of each object in the
image

• 1 points for correctly reporting the world frame coordinates of the
centroid of each object

• 2 bonus point for successfully picking up and placing a block.

44 LAB 6. CAMERA CALIBRATION

Appendix A

Mathematica and Robotica

A.1 Mathematica Basics

• To execute a cell press <Shift>+<Enter> on the keyboard or
<Enter> on the numberic keypad. Pressing the keyboard <Enter>
will simply move you to a new line in the same cell.

• Define a matrix using curly braces around each row, commas
between each entry, commas between each row, and curly braces
around the entire matrix. For example:

M = {{1, 7}, {13, 5}}

• To display a matrix use MatrixForm which organizes the elements in
rows and columns. If you constructed matrix M as in the previous
example, entering MatrixForm[M] would generate the following
output: (

1 7
13 5

)

If your matrix is too big to be shown on one screen, Mathematica
and Robotica have commands that can help (see the final section of
this document).

• To multiply matrices do not use the asterisk. Mathematica uses the
decimal for matrix multiplication. For example, T=A1.A2 multiplies
matrices A1 and A2 together and stores them as matrix T.

45

46 APPENDIX A. MATHEMATICA AND ROBOTICA

• Notice that Mathematica commands use square brackets and are
case-sensitive. Typically, the first letter of each word in a command
is capitalized, as in MatrixForm[M].

• Trigonometric functions in Mathematica operate in radians. It is
helpful to know that π is represented by the constant Pi (Capital ‘P’,
lowercase ‘i’). You can convert easily from a value in degrees to a
value in radians by using the command Degree. For example, writing
90 Degree is the same as writing Pi/2.

A.2 Writing a Robotica Source File

• Robotica takes as input the Denavit-Hartenberg parameters of a
robot. Put DH frames on a figure of your robot and compute the
table of DH paramters. Open a text editor (notepad in Windows will
be fine) and enter the DH table. You will need to use the following
form:

DOF=2

(Robotica requires a line between DOF and joint1)

joint1 = revolute

a1 = 3.5

alpha1 = Pi/2

d1 = 4

theta1 = q1

joint2 = prismatic

a2 = 0

alpha2 = 90 Degree

d2 = q2

theta2 = Pi

• You may save your file with any extension, but you may find ‘.txt’ to
be useful, since it will be easier for your text editor to recognize the
file in the future.

• Change the degrees of freedom line (‘DOF=’) to reflect the number of
joints in your robot.

• Using joint variables with a single letter followed by a number (like
‘q1’ and ‘q2’) will work well with the command that simplifies
trigonometric notation, which we’ll see momentarily.

A.3. ROBOTICA BASICS 47

A.3 Robotica Basics

• Download ‘robotica.m’ from the website. Find the root directory for
Mathematica on your computer and save the file in the
/AddOns/ExtraPackages directory.

• Open a new notebook in Mathematica and load the Robotica
package by entering

<< robotica.m

• Load your robot source file. This can be done in two ways. You can
enter the full path of your source file as an argument in the DataFile

command:

DataFile["C:\\directory1\directory2\robot1.txt"]

Notice the double-backslash after C: and single-backslashes elsewhere
in the path. You can also enter DataFile[] with no parameter. In
this case, Mathematica will produce a window that asks you to
supply the full path of your source file. You do not need
double-backslashes when you enter the path in the window. You will
likely see a message warning you that no dynamics data was found.
Don’t worry about this message; dynamics is beyond the scope of
this course.

• Compute the forward kinematics for your robot by entering FKin[],
which generates the A matrices for each joint, all possible T
matrices, and the Jacobian.

• To view one of the matrices generated by forward kinematics, simply
use the MatrixForm command mentioned in the first section. For
example, MatrixForm[A[1]] will display the homogeneous
tranformation A[1].

A.4 Simplifying and Displaying Large,
Complicated Matrices

• Mathematica has a powerful function that can apply trigonometric
identities to complex expressions of sines and cosines. Use the
Simplify function to reduce a complicated matrix to a simpler one.

48 APPENDIX A. MATHEMATICA AND ROBOTICA

Be aware that Simplify may take a long time to run. It is not
unusual to wait 30 seconds for the function to finish. For example,
T=Simplify[T] will try a host of simplification algorithms and
redefine T in a simpler equivalent form. You may be able to view all
of the newly simplified matrix with MatrixForm.

• Typically, matrices generated by forward kinematics will be littered
with sines and cosines. Entering the command
SimplifyTrigNotatation[] will replace Cos[q1] with c1,
Sin[q1+q2] with s12, etc. when your matrices are displayed.
Executing SimplifyTrigNotation will not change previous output.
However, all following displays will have more compact notation.

• If your matrix is still too large to view on one screen when you use
MatrixForm, the EPrint command will display each entry in the
matrix one at a time. The EPrint command needs two parameters.
The first is the name of the matrix to be displayed, the second is the
label used to display alongside each entry. For example, entering
EPrint[T,"T"] will display all sixteen entries of the homogeneous
transformation matrix T individually.

A.5. EXAMPLE 49

A.5 Example

Consider the three-link revolute manipulator shown in Figure A.1. The
figure shows the DH frames with the joint variables θ1, θ2, θ3 and
parameters a1, a2, a3 clearly labeled. The corresponding table of DH
parameters is given in Table A.1.

Figure A.1: Three-link revolute manipulator with DH frames shown and
parameters labeled. The z axes of the DH frames are pointing out of the
page.

joint a α d θ

1 a1 0 0 θ1
2 a2 0 0 θ2
3 a3 0 0 θ3

Table A.1: Table of DH parameters corresponding to the frames assigned in
Figure A.1.

50 APPENDIX A. MATHEMATICA AND ROBOTICA

We open a text editor and create a text file with the following contents.

DOF=3

The Denavit-Hartenberg table:

joint1 = revolute

a1 = a1

alpha1 = 0

d1 = 0

theta1 = q1

joint2 = revolute

a2 = a2

alpha2 = 0

d2 = 0

theta2 = q2

joint3 = revolute

a3 = a3

alpha3 = 0

d3 = 0

theta3 = q3

We save the file as c:

example.txt . After loading Mathematica, we enter the following
commands.

<< robotica.m

DataFile["C:\\example.txt"]

If all goes well, the Robotica package will be loaded successfully, and the
example datafile will be opened and its contents displayed in a table.

No dynamics data found.

Kinematics Input Data

Joint Type a alpha d theta

1 revolute a1 0 0 q1

2 revolute a2 0 0 q2

3 revolute a3 0 0 q3

Now generate the forward kinematic matrices by entering the following
command.

FKin[]

A.6. WHATMUST BE SUBMITTEDWITH ROBOTICA ASSIGNMENTS51

Robotica will generate several status lines as it generates each A and T
matrix and the Jacobian. Now we will view one of these matrices. We
decide to view the T 3

0 matrix. Entering

MatrixForm[T[0,3]]

generates the output
Cos[q1 + q2 + q3] -Sin[q1 + q2 + q3] 0 a1 Cos[q1] + ...
Sin[q1 + q2 + q3] Cos[q1 + q2 + q3] 0 a1 Sin[q1] + ...

0 0 1 0
0 0 0 1


which is too wide to fit on this page. We wish to simplify the notation, so
we enter

SimplifyTrigNotation[]

before displaying the matrix again. Now, entering the command

MatrixForm[T[0,3]]

generates the much more compact form
c123 −s123 0 a1c1 + a2c12 + a3c123
s123 c123 0 a1s1 + a2s12 + a3s123

0 0 1 0
0 0 0 1

 .

A.6 What Must Be Submitted with Robotica
Assignments

For homework and lab assignments requiring Robotica, you must submit
each of the following:

1. figure of the robot clearly showing DH frames and appropriate DH
parameters

2. table of DH parameters

3. matrices relevant to the assignment or application, simplified as
much as possible and displayed in MatrixForm.

52 APPENDIX A. MATHEMATICA AND ROBOTICA

Do not submit the entire hardcopy of your Mathematica file. Rather, cut
the relevant matrices from your print out and paste them onto your
assignment. Also, remember to simplify the matrices as much as possible
using the techniques we have presented in section A.4 of this Appendix.

• Mathematically simplify the matrix using Simplify.

• Simplify the notation using SimplifyTrigNotation. Remember that
all mathematical simplification must be completed before running
SimplifyTrigNotation.

• If the matrix is still too large to view on the screen when you use
MatrixForm, use the EPrint command to display the matrix one
entry at a time.

Appendix B

C Programming in ROS

B.1 Overview

ROS is an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including
hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

• The ROS runtime ”graph” is a peer-to-peer network of processes
(potentially distributed across machines) that are loosely coupled
using the ROS communication infrastructure. ROS implements
several different styles of communication, including synchronous
RPC-style communication over services, asynchronous streaming of
data over topics, and storage of data on a Parameter Server.

• For more details about ROS: http://wiki.ros.org/

• How to install on your own Ubuntu:
http://wiki.ros.org/ROS/Installation

• For detailed tutorials: http://wiki.ros.org/ROS/Tutorials

B.2 ROS Concepts

The basic concepts of ROS are nodes, Master, messages, topics, Parameter
Server, services, and bags. However, in this course, we will only be
encountering the first four.

53

54 APPENDIX B. C PROGRAMMING IN ROS

• Nodes programs or processes in ROS that perform computation. For
example, one node controls a laser range-finder, one node controls
the wheel motors, one node performs localization ...

• Master Enable nodes to locate one another, provides parameter
server, tracks publishers and subscribers to topics, services. In order
to start ROS, open a terminal and type:

$ r o s c o r e

roscore can also be started automatically when using roslaunch in
terminal, for example:

$ ros launch <package name> <launch f i l e name>. launch
the launch f i l e f o r a l l our l a b s :
$ ros launch r h i n o r o s r h i n o s t a r t . launch

• Messages Nodes communicate with each other via messages. A
message is simply a data structure, comprising typed fields.

• Topics Each node publish/subscribe message topics via send/receive
messages. A node sends out a message by publishing it to a given
topic. There may be multiple concurrent publishers and subscribers
for a single topic, and a single node may publish and/or subscribe to
multiple topics.In general, publishers and subscribers are not aware
of each others’ existence.

Figure B.1: source: http://wiki.ros.org/ROS/Concepts

B.3 Before we start..

Here are some useful Linux/ROS commands

• The command ls stands for (List Directory Contents), List the
contents of the folder, be it file or folder, from which it runs.

B.3. BEFORE WE START.. 55

$ l s

• The mkdir (Make directory) command create a new directory with
name path. However is the directory already exists, it will return an
error message cannot create folder, folder already exists.

$ mkdir <new directory name>

• The command pwd (print working directory), prints the current
working directory with full path name from terminal

$ pwd

• The frequently used cd command stands for change directory.

$ cd /home/ user /Desktop

return to previous directory

$ cd . .

Change to home directory

$ cd ˜

• The hot key ”ctrl+c” in command line terminates current running
executable.

• If you want to know the location of any specific ROS
package/executable from in your system, you can use ’rospack find
”package name” command. For example, if you would like to find
’lab2’ package, you can type in your console

$ rospack f i n d lab2

• To move directly to the directory of a ROS package, use roscd. For
example, go to lab2 package directory

$ roscd lab2

• Display Message data structure definitions with rosmsg

$ rosmsg show <message type> #Disp lay the f i e l d s in the msg

56 APPENDIX B. C PROGRAMMING IN ROS

• rostopic, A tool for displaying debug information about ROS topics,
including publishers, subscribers, publishing rate, and messages.

$ r o s t o p i c echo / topic name #Print messages to screen .
$ r o s t o p i c l i s t #L i s t a l l the t o p i c s a v a i l a b l e
#P u b l i s h data to t o p i c .
$ r o s t o p i c pub <top ic−name> <top ic−type> [data . . .]

B.4 Create your own workspace

It is recommended that you have your workspace created in your own usb
drive to work with, so no other groups sharing the same workstation will
be able to tamper with your codes. And have a backup copy in your
laptop or cloud drive.

• First format your usb drive to be compatible with Linux(Ext4). (Ask
TA or Google)

• Then go to your usb root directory following procedures below.

$ cd ˜
$ cd /media/youbot/ #doub le p r e s s Tab to show a v a i l a b l e c h o i c e s
<media name 1> usb dir name #example output f o r doub le Tab
$ cd /media/youbot/ usb dir name # p r e s s en ter

• Let’s create a catkin workspace. You can use a different name than
catkin ws if you’d like but it is recommended that you leave the word
catkin in the directory name.

$ mkdir −p / catk in ws / s r c
$ cd / catk in ws / s r c
$ c a t k i n i n i t w o r k s p a c e

• Even though the workspace is empty (there are no packages in the
’src’ folder, just a single CMakeLists.txt link) you can still ”build”
the workspace. Just for practice, build the workspace.

$ cd ˜/ catk in ws /
$ catkin make

• VERY IMPORTANT: Remember to ALWAYS source when you open
a new command prompt, so you can utilize the full convenience of
Tab completion in ROS. Under workspace root directory:

B.5. RUNNING A NODE 57

$ source deve l / setup . bash

B.5 Running A Node

• Now, you can copy all the packages you want to the src directory.
For example, for Lab 2, download lab2.tar.gz, serial.tar.gz,
rhino ros.tar.gz into your src directory. Then right click on each
tar.gz file and extract them to the current directory. Finally, go to a
terminal you have opened and make sure you are in the workspace
root directory and run catkin make to Cmake all the cpp files.

• After compilation is complete, we can start running our own nodes.
For example our lab2 node. However, before running any nodes, we
must have roscore running. This is taken care of by running a launch
file.

$ ros launch r h i n o r o s r h i n o s t a r t . launch

This command runs both roscore and a ros-to-rhino serial
communication process that acts as a subscriber waiting for a
command message that controls the Rhino’s motors via the serial
interface.

• Open a new command prompt with ”ctrl+shift+N”, cd to your root
workspace directory, and source it.

• Run your node with the command rosrun in the new command
prompt. Example of running lab2 node in lab2 package:

$ rosrun lab2 lab2

B.6 Simple Publisher and Subscriber Tutorial

Please refer to the webpage:
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c%2B%2B)

58 APPENDIX B. C PROGRAMMING IN ROS

Appendix C

Notes on Computer Vision

C.1 OpenCV in ROS

For the first four labs, we have used the text-only remote environment to
interface with the Rhino. In labs 5 and 6, we will work with computer
vision and consequently will need to view images as we process them. We
will use OpenCV library in ROS to interface with the camera and the
Rhino simultaneously. You don’t have to install this library since it’s
already included in ROS Indigo or any newer version of ROS.

C.1.1 Camera Driver

A camera driver in ROS is needed to read image from camera. Here we are
using a driver called ”cv camera”. This package is provided in folder:

cv camera−master

You should put this folder in src folder in your workspace and compile.
Then open in editor the following file:

cv camera−master / test / cv camera ece470 . test

You can modify the following code to set up the camera:

• Image size:

<param name=” image width ” value = ”640”/>
<param name=” image he ight ” value = ”480”/>

This is already the maximum size of this camera. The minimum size
is 160 by 120, and only 4:3 ratio is supported.

59

60 APPENDIX C. NOTES ON COMPUTER VISION

• Camera rate:

<param name=” ra t e ” value=”10”/>

You won’t need to modify other parameters. To load the driver, open a
new shell window and launch the ”.test” file(should run the setup.bash file
first):

$ ros launch cv camera cv camera ece470 . test

Once the driver is loaded, the camera will start working and the image
data is published to topic

/ cv camera node / image raw

which is a ROS image message.
If you see error ”HIGHGUI ERROR: V4L: device /dev/video0: Unable to
query” when launching the driver file, then probably the camera’s
connection is poor, unplug and plug in the camera cable again, then try to
launch the driver file again. It’s fine to have warning ”Invalid argument”.

C.1.2 Accessing Image Data

ROS and OpenCV are using different image data types, we have to convert
ROS images to OpenCV images in order to use OpenCV environment for
image processing. The library ”cv bridge” will help you convert between
ROS images and OpenCV images, it’s also already included in ROS
Indigo. In the provided code for lab 5, the conversion is done in the class
”ImageConverter”, this class subscribes the image published by the
camera, converted to OpenCV image, then convert it back to ROS image
and publishes it to topic a new topic:

/ image converte r / output v ideo

It’s necessary to briefly explain the structure of the provided code for lab5.
As well as the image conversion, the image processing(where you should be
working on) is also done in this code. One can also add a publisher to send
command to robot based on image information. After compilation, the
code will generate a node. The logic of code is:

#include libraries

class ImageConverter

{

C.1. OPENCV IN ROS 61

public:

ImageConverter()

{

the subscriber goes here, it will convert received ROS image to

OpenCV image then call the function imageCb() which is public for

this class,when a new image is read.

}

~ImageConverter()

{

}

void imageCb()

{

This function will be called whenever a new image is received, then we

call the private functions thresholdImage() and associateObjects() to

threshold the image and associate objects in image. Then show them in

some windows.

}

private:

Mat thresholdImage()

{

This private function take a gray scale image as input, give a black

and white imagebinary image as output.

}

Mat associateObjects()

{

This private function take black and white image as input, associate

the objects in the image.

}

};

void onMouse()

{

This is a callback function outside of class, it’s called whenever a mouse

click is detected.

}

int main(int argc, char** argv)

{

In main, we just need to declare the class:

62 APPENDIX C. NOTES ON COMPUTER VISION

ImageConverter ic;

return 0;

}

All the work is done inside of class ”ImageConverter”. Here, if you never
used a class, think it as a self defined structure, with variables or functions
as its member. A class consists of its constructor, destructor(not always
required), public members and private members.

• ImageConverter(): The constructor of this class. It will be executed
when a variable of this class is declared. We will put the subscriber
in constructor. ImageConverter() is the destructor.

• imageCb(): A public function of this class. It means we can call this
function outside of the class by refer to ImageConverter::imageCb().
We’ll call some private functions here.

• thresholdImage() and associateObjects(): Private functions, which
can only be used inside the class. We’ll modify the code for these two
functions.

• onMouse(): A callback function outside of the class. This function
will be run whenever there’s a mouse click detected.

• main(): In main(), we just need to declare a variable which is a
ImageConverter class. Then the works wrote inside the class will be
executed.

The OpenCV image is of class cv::Mat. You can find the documentation
here at:

http :// docs . opencv . org /2 .4/ modules/ core /doc/ b a s i c s t r u c t u r e s . html#mat

It’s a class with some members in it, we will you only some of its members,
here lets define a image variable of this class ”cv::Mat”, and we copy
another the existing image to it using it’s function member ”clone()”:

cv::Mat image = some_existing_image.clone();

We can read the rows and columns:

C.1. OPENCV IN ROS 63

int height = image.rows;

int width = image.cols;

Most importantly, the pixel values are stored in it’s vector member ”data”,
we can read and write the value of each pixel:

uchar pixel_value; // pixel value if type of uchar

pixel_value = gray_img.data[10]; //read the 10th pixel value

bw_img.data[11]= 255; // change the 11th pixel to white

C.1.3 Some Useful OpenCV Functions

Here are some useful OpenCV Functions, if you want to do cooler image
processing:

• cvtColor(): Converts an image from one color space to another.
Example:

cvtColor(old_image, new_image, CV_BGR2GRAY);

//convert old_image to gray scale image and save to new_image.

• threshold(): Applies a fixed-level threshold to each array element..
Example:

threshold(gray_image, bw_image, 100.0, 255.0, cv::THRESH_BINARY);

// threshold the gray scale image gray_image and save the resulting

// binary image to bw_image

• findContours(): Finds contours in a binary image.

• moments():Calculates all of the moments up to the third order of a
polygon or rasterized shape.

• circle():Draws a circle

There are tons of functions that will help you edit the images in OpenCV,
you can find the documentation of above functions and more at:

http :// docs . opencv . org /2 .4/

Or just google the task you want to do with the image, there are always
related functions.

64 APPENDIX C. NOTES ON COMPUTER VISION

C.2 Introduction to Pointers

Instead of loading the pixels of our images into large variables, we will
instead use pointers to reference the images. A pointer is a special variable
that stores the memory address of another variable rather than the its
value.

• & before a variable name references the address of a variable.

• * before a variable name in a declaration defines the variable as a
pointer.

• * before a pointer name references the value at the address stored in
the pointer.

Consider the following segment of code.

1 void main()

2 {

3 float r = 5.0;

4 float pi = 3.14159;

5 float *ptr;

6 // define a pointer to a floating-point number

7

8 ptr = π

9 console_printf("The address in memory of

10 variable pi is %i", ptr);

11 console_printf("The circumference of the

12 circle is %f", 2*(*ptr)*rad);

13 }

The output from this segment of code would be as follows.

The address in memory of variable pi is 2287388

The circumference of the circle is 31.415901

The * before the variable name in Line 5 declares ptr to be a pointer. Line
7 uses the & operator to assign ptr the address in memory of the variable
pi. Notice that pi is a floating-point number and ptr was declared as a
pointer to a floating-point number. From the output of Line 8 we see that
ptr contains only address of the variable pi, not the value of the variable.
To make use of the value of pi, we employ the * operator, as shown in the
output of Line 9.

C.3. SIMPLIFYING CAMERA CALIBRATION 65

C.3 Simplifying Camera Calibration

In lab 6, we need to calibrate the camera. That is, we want to derive
formulas to compute an object’s coordinates in the world frame (x, y, z)w

based on row and column coordinates in the image (x, y)c. The necessary
math is found in chapter 11 of SH&V. For this lab, however, we may make
a few assumptions that will greatly simplify the calculations. We begin
with the following intrinsic and extrinsic equations:

intrinsic:
r = fx

zc x
c +Or

c =
fy
zc y

c +Oc

extrinsic: pc = Rcwp
w +Ocw

with the variables defined as in Table C.2.

The image we have is “looking straight down” the zc axis. Since the center
of the image corresponds to the center of the camera frame, (r, c) does not
correspond to (xc, yc) = (0, 0). Therefore, you must adjust the row and
column values using (Or, Oc).

66 APPENDIX C. NOTES ON COMPUTER VISION

name description

(r, c) (row,column) coordinates of image pixel
fx, fy ratio of focal length to physical width and length of a pixel

(Or, Oc) (row,column) coordinates of principal point of image
(principal point of our image is center pixel)

(xc, yc) coordinates of point in camera frame
pc = [xcyczc]T coordinates of point in camera frame
pw = [xwywzw]T coordinates of point in world frame
Ocw = [TxTyTz]

T origin of world frame expressed in camera frame
Rcw rotation expressing camera frame w.r.t. world frame.

Table C.1: Definitions of variables necessary for camera calibration.

We also note that the row value is associated with the xc coordinate, and
the column value is associated with the yc coodinate. By this definition,
and the way row and column increase in our image, we conclude that the
zc axis points up from the table top and into the camera lens. This is
different than the description and figure in the text! (In order to match the
text, we would need row or column to increment in a reverse direction) As
a consequence, we define Rcw = Rz,θ instead of Rz,θRx,180◦ .

We make the following assumptions:

1. The z axis of the camera frame points straight up from the table top,
so zc is parallel to zw. Modifying the equation from the text, we have

Rcw = Rz,θ

=

 cθ −sθ 0
sθ cθ 0
0 0 1

 .
2. All objects in our image will be the blocks we use in the lab, therefore

all objects have the same height. This means that zc in the intrinsic
equations is the same for every object pixel. Since we can measure
zc, we can ignore the computation of zc in the extrinsic equation.

3. The physical width and height of a pixel are equal (sx = sy).
Together with assumption 2, we can define

β =
fx
zc

=
fy
zc
.

C.3. SIMPLIFYING CAMERA CALIBRATION 67

The intrinsic and extrinsic equations are now

intrinsic:
r = βxc +Or
c = βyc +Oc

extrinsic:

[
xc

yc

]
=

[
cθ −sθ
sθ cθ

] [
xw

yw

]
+

[
Tx
Ty

]
.

For our purposes, we are interested in knowing a point’s coordinates in the
world frame (x, y)w based on its coordinates in the image (r, c). Therefore,
you must solve the four equations for the world coordinates as functions of
the image coordinates.

xw(r, c) =

yw(r, c) =

	8th Robotics Level-3.pdf
	Slide 1: Humanoid Robot Project Establishment (Level-3)
	Slide 2: Humanoid Robot Project Establishment (Level-3)
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan

	3

